CHEMISTRY I MARKING SCHEME, 2016 SECTION A:

- 1. a) Water/moisture
 - Oxygen/air
 - b) Painting iron objects
 - Galvanization of iron (Coating with zinc)
 - Alloying
 - Greasing
- 3. a) $100 \text{cm}^3 = 0.1 \text{dm}^3$

Number of moles = $0.5 \text{moldm}^3 \times 0.1 \text{dm}^3$ = 0.05 moles

b) $H_2SO_{4(aq)} + 2NaOH_{(aq)} \longrightarrow Na_2SO_{4(aq)} + 2H_2O_{(aq)}$

Mass of Na₂SO₄ =
$$\frac{142g \times 0.05mol}{2 \ mol}$$
 = 3.55g

6. a) Calcium atom representation

b)
$$Ca_{(S)} + \frac{1}{2} O_{2(g)} \longrightarrow CaO_{(S)}$$

- 8. a) Evolution of colorless gas.
 - Heat is liberated (evolved) during the reaction.

b)
$$Ca_{(S)} + 2H_2O_{(L)} \longrightarrow Ca(OH)_{2(aq)} + H_{2(g)}$$

- 10. a) The blue litmus paper turns red.
 - b) Equation of reaction:

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

11. a) Reagent: Lead nitrate solution Observation: When H₂S is bubbled in lead nitrate solution, a black precipitate is formed. There is no black precipitate formed when SO₂ is used.

b) Reagent: Ammonia solution Observation: Cu(NO₃)₂ forms a deep blue precipitate when ammonia solution is added to it. Fe(NO₃)₂ forms a greenish precipitate when ammonia solution is added to it.

- 2. a) Rain, Lakes, Rivers, Surface water, ocean, water cycle.
- b) A floculant such as A(SO₄)₃ is put in unclean water to precipitate solid mud particles.
 - The water is kept in a vessel for decantation
 - Simple distillation to get pure water
 - Screening followed by decantation/filtration.
- 4. a) An hydrous cobalt chloride paper (blue in color) which turns pink.
- b) 20.95%.
- 5. a) The Ozone layer absorbs ultra-violent light of the sun and prevents them from arriving on earth to cause cancer to humans.
- b) Chloro fluoro carbons

$$S + 2e \longrightarrow S^{2-}$$

$$Na^+ + S^{2-}$$

b) Physical property of Na₂S:

Has a high boiling point/melting point, solid at room temperature, conducts electricity in molten/aqueous solution.

Chemical property of Na2S:

It reacts with water/acids

- 9. a) Copper has a higher melting point than Mg.
 - b) Copper has a higher density than Mg.
 - c) Copper is brownish red while Mg is white in color.
- 12. a) $C_4H_{10} + 13O_2 \longrightarrow 4CO_2 + 5H_2O$
 - b) Domestic heating
 - Used in the manufacture of perfumes
 - used as a natural gas
 - Used as petrol
 - Solvent extraction
 - Used in making basins, plastics e.g. tanks

13.

a) Silicon dioxide forms a giant structure with covalent bonds. There are no mobile electrons in the structure.

b) Silicon dioxide forms a giant structure with covalent bonds. The covalent bonds are continuous to form a macromolecule that is

14. a) Number of moles of Mg in $3g = \frac{m}{mm} = \frac{3}{24}$

= 0.125 moles

b) Number of moles of $H_2SO_4 = n$ mg reacted $n H_2SO_4 = 0.125$ moles

$$m = \frac{n}{v}$$
; $v = \frac{0.125}{0.5} = 0.25 dm^3$

15. a) NH_{3(aq)}

b) A strong acid dissociates completely while a weak acid dissociates partially in water to give H⁺ ions.

SECTION B:

16. a) Number of moles of H2 gas produced:

$$\frac{400cm^3}{2400cm^3} = 0.0166 \text{ moles}$$

b) According to the equation, number of moles H_2 produced = number of moles of zinc that reacted = 0.0166 moles.

c) Mass of ZnO in the mixture:

$$= n \times R.A.M$$

$$= 0.0166 \times 65$$

$$= 1.079g$$

d)
$$2 - 1.079g$$

= $0.921g$

e) % composition of ZnO in the mixture

$$=\frac{0.921}{2} \times 100 = 46.05\%$$

17. a) $CuO_{(S)} + H_{2(g)} \rightarrow Cu_{(S)} + H_2O_{(L)}$

b) Black color of CuO changes to brownish red color of Cu

c) To remove water vapour/to dry the evolved gas mixture.

d) i) H2 is less dense than air

ii) A burning splint. H₂ burns to make a pop sound.

18

e)
$$CuO_{(S)} + C \rightarrow Cu_{(S)} + CO$$

18. a) i) To dry the gas mixture.

ii) Upward or downward displacement of air.

iii) NH_3 and $H_2SO_4 \longrightarrow (NH_4)_2SO_4$

iv) - NH3 is used to produce fertilizers

 NH₃ is used to manufacture polymer materials.

- Used to manufacture refrigerators.

b) i) $2HNO_{3(aq)} + Ca(OH)_{2(aq)} \longrightarrow Ca(NO_3)_{2(aq)} + H_2O_{(L)}$

ii) - Chemical fertilizers can pollute water in oceans/lakes so aquatic animals and plants lack respiration

- Eutrophication

c) 78.084% or 78%

19.

a) 2: 6

b) Li \longrightarrow Li⁺ + \bar{e}

c) Al \longrightarrow Al³⁺ + 3 \bar{e} ; Cl + \bar{e} \longrightarrow Cl⁻, By exchange of valency number of charges Al³⁺ reacts with 3Cl⁻, so the formular is Alcl₃.

- d) The compound has a low melting point
 - The compound does not conduct electricity
- e) To manufacture fertilizers, dyes, explosives, nitric acid and nylon.
 - Used to conserve sperms and as a refrigerant in storage of livestock semen.
- f) It does not undergo corrosion on exposure to water and other substances
 - It is lighter than other metal conductors of electricity

- b) The red litmus paper does not change the red color. After a long exposure to chlorine gas, the red color discharges and the paper becomes white.
- c) i) Cl₂ + H₂O → HCl + HClO
 - ii) Chlorine is used to disinfect, in treatment of plants, as a bleaching agent, used in the manufacture of insecticides, kills cholera, typhoid and other dangerous germs.

SECTION C

- 21. a) i) Graphite:
 - Conducts electricity
 - Is soft
 - Is black
 - Conducts heat
 - Is greasy in texture
 - Has a very high melting point (3730°C) and boiling point of 4830°C
 - ii) Diamond:
 - Is hard
 - Has a high melting point
 - Does not conduct electricity
 - Is colorless/transparent
 - Has a tetrahedral structure
 - Has a density of 3.5g.
- b) $2Fe_2O_3 + 3C \longrightarrow 4Fe + 3CO_2$
- c) i) Uses of Graphite
- Used to make pencils
- Used as a lubricant
- Used as electrodes in electrolysis
- Used to make strong fibre for reinforcing
- Used as a moderator in nuclear piles to slow down the reaction in order not to explode

Uses of Diamond

- Used to cut metals
- Glass cutter
- Drilling devices
- As an abrasive for smoothening hard material
- In jewellery
- d) i) Used in soft drinks/fizzy drinks
 - Used in fire extinguishers
 - Used as a refrigerant
 - Used in baking
 - Used in Photosynthesis
 - ii) Use of CO
- Used to reduce Iron oxide during the extraction of iron.
- Used to prepare CO₂
- Used as a fuel
- Formation of the ozone layer Danger of CO
- Poisonous to humans when inhaled
- e) Planting trees, reduce emission of CO₂ in industries, dissolving CO₂ in water bodies like oceans, lakes etc., use it as a renewable source of energy.

- f) i) $CaCO_3 + 2HC1 \longrightarrow CaCl_2 + CO_2 + H_2O$
 - ii) Boil the hard water
 - Use of washing soda Na₂CO₃.10H₂O
 - Use of NH_{3(ag)}
 - . Ion exchange
 - Distillation
- 22. a) Electrolyte is a substance that dissociates into ions when it is in a certain medium solution (aqueous) or molten state
- b) Nacl
- c i) Cathode: $2H^+ + 2\bar{e} \longrightarrow H_2$

Anode: $4H^- \longrightarrow 2H_2O_{(L)} + O_{2(g)}$

ii) Test for gas B: Use a burning splint

Observation: The gas burns with a pop sound.

- d) i) The anode reduces in size
 - The cathode increases in size.
 - ii) Extraction of metals
 - Production of chlorine and sodium hydroxide
 - Purification of copper
 - Used in electroplating
- e) i) Zinc will act as the anode
 - ii) Reagent: NH3 solution

Observation: CuSO₄ turns into blue precipitate that becomes deep blue in excess ammonia solution.

Zinc Sulphate: turns white precipitate that becomes a colorless solution in NH₃ solution.

END